Detection Equipment is Key to Finding Refrigerant Leaks

Detection Equipment is Key to Finding Refrigerant Leaks

Refrigerant leaks are the number one cause of poor A/C cooling performance. The amount of refrigerant in an A/C system is critical for proper cooling. Any loss of refrigerant reduces the system’s ability to transfer heat, causing the compressor to work harder and the system to cool less efficiently. To make matters worse, the refrigerant capacities of most late-model passenger car A/C systems have been lowered to reduce emissions. The typical A/C system today only holds about 24 oz. of refrigerant, and some newer Saturn models are down to a mere 13 oz!

With these facts in mind, it should be obvious that finding and fixing refrigerant leaks is more important than ever before. That’s why technicians need detection equipment that can help them find even the smallest leaks.

Federal law does not require technicians to check for leaks or to repair leaks prior to recharging an A/C system that is low on refrigerant. California and Florida did require leak checks, but the laws have been repealed. Wisconsin does not allow a system that is known to be leaking to be recharged without first being repaired, but there is no requirement to check for leaks. Even so, common sense should tell you it’s always a good idea to check for leaks – and to repair any leaks that might be found to prevent the refrigerant from escaping again.

Leaks occur most often at the compressor shaft seal, and at hose and pipe connections where O-rings and seals are located. High and low pressure refrigerant hoses, can also leak, as can the condenser and evaporator (most often from internal corrosion). Large refrigerant leaks, like the kind that can discharge an A/C system within a few weeks or months, often leave telltale greasy stains that indicate the point of leakage. But this is more the case with older vehicles (those built prior to 1994-’95) that have R-12 A/C systems and use mineral oil to lubricate the compressor. On newer vehicles with R-134a systems, PAG oil lubricants leave fewer obvious clues where there’s a leak. And with small leaks, there may not be any visible clues at all. That’s where leak detection dyes and electronic leak detectors come in handy.

Leak Detection Dye
Fluorescent leak detection dye that is added to refrigerant will typically glow a greenish-yellow or greenish-blue when illuminated with an ultraviolet (UV) light (also called a “black light” because of its purplish glow). As the dye circulates throughout the system, it will follow the refrigerant through any pinholes or cracks if there are any leaks. You can then examine the hoses, connections and various parts of the A/C system with an ultraviolet light to see if there are any telltale traces of dye on the outside of these parts.

One of the benefits of using leak detection dye is that it stays in the A/C system as long as the system contains refrigerant. Some vehicle manufacturers now add dye at the factory when they initially charge the A/C system so technicians can find any leaks that might occur. Many shops also add dye as “insurance” to make sure a system isn’t leaking after it has been serviced – and to encourage customers to bring back their vehicles for future leak inspections.

Dye can be added to an A/C system with the refrigerant (pre-mixed), or injected using a cartridge and squeeze-handle injector gun through the low-side service fitting. A single shot of dye is typically 1/4 oz. (7.5 ml).

Shining a Light on the Subject
To illuminate the dye, an ultraviolet light source is needed. UV lights are available in a wide variety of sizes and styles, ranging from large 12-volt DC and 110-volt AC models to small flashlights. A large spotlight-sized lamp is good for illuminating a wide area in the engine compartment while a smaller, more focused light is better for hard-to-reach areas and working in tight spaces. Donning a pair of yellow-tinted glasses also improves visibility by increasing the visual contrast of the dye.

The latest trend in dye detection lights is a new breed of UV lamps that use LED lamps instead of traditional incandescent filaments. LEDs are very long lived (up to 10,000 hours or more) and use much less current than traditional lamps. The light can also be sharply focused to pinpoint leaks in tight areas. Such lamps typically use 5 to 7 LEDs to illuminate the dye.

As effective as dye is, it does have a few limitations. One is that it’s hard to see leaks in “hidden” areas such as a leaky evaporator inside the HVAC case. If you suspect an evaporator leak and dye has been added to the A/C system, you can check the evaporator case drain hose to see if any dye has gotten that far. The alternative is to spend several hours tearing apart the dash and HVAC system to visually inspect the evaporator for leaks. Or, you could check the evaporator for leaks by simply inserting the probe of an electronic leak detector into the HVAC case.

Dye also needs time to work. Once it has been added to an A/C system, it needs time to circulate with the refrigerant. It may take several hours or even several days of operation before enough dye leaks through a crack or hole to reveal a leak.

There is also a risk of using too much dye. Though leak detection dye is compatible with refrigerants and compressor lubricants, adding several successive doses of dye in an attempt to find a leak may increase the risk of plugging an orifice tube or reducing the lubricity of the compressor oil. If someone has already added dye to the system, don’t add more. It only takes a small amount to reveal a leak, and adding more won’t speed up the process or make it any more effective.

Electronic Leak Detectors
Another tool that can help you find refrigerant leaks is an electronic leak detector. There are three basic types:

1. Electromechanical corona discharge detectors. This type of detector pulls air through an electrical field around a wire. The presence of refrigerant or other gases in the air changes the current in the wire to trigger an alarm. The tool may beep or flash when a leak is detected. The level of sensitivity for this type of tool is not as high as the next two technologies, but it can still find leaks as small as 0.3 oz. to 0.6 oz. per year. The Society of Automotive Engineers (SAE) J1627 specification calls for a minimum sensitivity of leaks on the order of 0.5 oz. per year.

2. Solid-state heated diode detectors. The sensing element in this type of detector is a heated ceramic diode. When air containing a halogen gas is drawn across the diode, it generates an electrical signal that triggers the alarm. This type of equipment is much more sensitive than the corona discharge detectors, and is capable of finding leaks as small as 0.1 oz. a year with R-134a. It also gives fewer “false alarms” because it only reacts to halogen gases (refrigerants) and not other fumes that may be present under the hood of a vehicle. But its drawback is sensor life. The heated diode sensor can be contaminated with moisture and typically lasts only two to three years in a busy shop environment. The sensor can be replaced for an average cost of $20 to $40.

3. Nondispersive infrared detectors. This is the newest leak detection technology and will be used in more new leak detectors. This type of equipment uses an “optical bench” that shines an infrared light of a specific wavelength through air passing across the bench. If the air contains any halogen gas. The gas disrupts the light beam and triggers an alarm. It’s the same basic technology that is used in many refrigerant identifiers to find out what kind of gases are inside an A/C system.

The main advantage of nondispersive infrared technology is that its sensitivity is on par with heated diode detectors (down to 0.1 oz./year), but it doesn’t have contamination issues or a limited sensor life. According to one manufacturer of A/C diagnostic equipment, the projected service life of the infrared sensor is up to 15 years or more – after that, who cares because there will be another new technology to replace it.

Down the Road
SAE is working with the vehicle manufacturers and the Mobile Air Conditioning Society (MACS) to develop “enhanced,” next-generation R-134a systems that are smaller, more energy efficient and tighter than today’s A/C systems. The program is called “I-MAC,” which stands for Improved Mobile Air Conditioning. One of the program’s goals is to reduce refrigerant leakage 50% compared to current A/C systems. This will require the use of improved seal designs, hoses and O-ring connections – and even better leak detection equipment.

When SAE revises its current J1627 standard, next-generation electronic leak detectors will probably be required to detect leaks as small as 4 grams/year (compared to 13 grams/year now). Consequently, a leak detector you buy today may or may not be sensitive enough a few years down the road to find leaks in future cars.

Another uncertainty that may impact future A/C leak detection equipment is whether or not R-134a will be phased out and replaced by yet another alternative refrigerant. The change to R-134a was made to address the ozone problem. It contains no ozone-damaging fluorocarbons, but it is a greenhouse gas that contributes to global warming. R-134a has 1,300 times the global warming potential of carbon dioxide (CO2), so if automakers are forced to switch to a more environmentally friendly refrigerant such as CO2 or HFC-152a it will require a whole new generation of service and leak detection equipment. But, that may not happen for another decade or so.

MACS Issues Reminder On Refrigerant Usage in Mobile A/C Service

Several market factors are influencing the supply of HFC-134a refrigerant available for the 2005 service and repair season. The potential of reduced availability and increased cost of HFC-134a is a source of concern for the service and repair industry.

The Mobile Air Conditioning Society (MACS) Worldwide would like to remind all service technicians performing mobile A/C system service and repair that even though there are a number of other refrigerants on the market listed by the U.S. EPA as environmentally acceptable, they are for use only in CFC-12 automotive A/C systems. The EPA listing does not identify any replacement refrigerant for HFC-134a systems, and the U.S. EPA has not evaluated alternative refrigerants for system performance and durability.

At the 2005 MACS convention, Jeanne Briskin, deputy director of EPA’s Stratospheric Protection Division and the acting chief of the Alternatives and Emissions Reductions Branch, spoke about several issues including the Significant New Alternatives Policy (SNAP) and replacement refrigerants.

Several points to remember about SNAP:

  • SNAP regulates replacement of ozone depleting (CFC-12) refrigerants only;

  • SNAP lists only HFC-134a and HCFC and other non-flammable refrigerant blends;

  • SNAP-listed blend refrigerants containing HCFCs require certification to purchase;

  • SNAP does not list replacements for HFC-134a refrigerant systems;

  • SNAP evaluates refrigerants for environmental impact and safety; and

  • SNAP does not evaluate refrigerants for cooling performance, material compatibility or system reliability.

It is important for technicians to understand that the U.S. EPA rules (under the U.S. Clean Air Act) do not cover requirements for HFC-134a mobile A/C systems, except for the venting prohibition.

Current market conditions require the service industry to be vigilant when servicing mobile A/C systems, following the vehicle manufacturer’s service requirements. If non-OEM approved refrigerants are installed in HFC-134a systems, possible concerns include: system cooling performance; system reliability; material compatibility; chemical damage from blend refrigerants (chlorine) to system lubricant, seals and hoses; contamination with lubricants required for blend refrigerants; and safety.

Additionally, current systems are not designed to use flammable refrigerants. Use of flammable refrigerants in mobile A/C systems is illegal in many states. Under the Clean Air Act, any refrigerant blend that contains CFCs, HCFCs or HFCs cannot be vented by anyone and must be recovered at service or vehicle disposal. Only technicians certified under the Clean Air Act can purchase blend refrigerants that contain CFCs or HCFCs.

Equipment that is certified to meet the SAE standards and the Clean Air Act to service CFC-12 or HFC-134a mobile A/C systems should not be used to recover or recharge a blend or other refrigerant due to contamination and possible damage to the equipment and other mobile A/C systems. The use of a refrigerant identifier is recommended to protect the HFC-134a mobile A/C fleet and shop equipment from contamination.

You May Also Like

2024 Is Your Year to Be the Technician You Always Wanted to Be

As we enter 2024, strategic career planning is essential for success in the automotive repair industry.

happy new year 2024

As we’ve officially entered 2024, it’s time to strategically plan your career paths for the year ahead. Let’s dive into some actionable strategies to successfully navigate the automotive repair world.

For those of you eyeing promotions, hardcore planning is non-negotiable. Identify the skills you need that will help you advance, whether it’s specialized technical expertise or sharpened leadership skills. Being adaptable, learning new skills and honing your craft makes you an indispensable employee in the shop.

Brake Lathe Basics

Resurfacing drums and rotors is a machining process with its own specific guidelines.

Refrigerant Oil Has to Be Right

Oil type is just as important as oil capacity.

Three bottles of refrigerant oil
Top 5 Tools: Steve Coffell, Auto World, Hazelwood, MO

Steve Coffell, a technician at Auto World in Hazelwood, MO, says his Top 5 Favorite Tools are: Related Articles – Lisle Low Profile Fuel Line Disconnect – Dent Fix Soft-Shock Mallet DF-SM76 Reduces Damage – New ProMAXX Diesel Fuel Injector Seal Puller/Saver ProKits   OTC Genisys Touch – Quick scan, bidirectional control Snap-on VANTAGE Pro

Wheel Bearing Adjustment Tools & Equipment

A wheel bearing that’s out of adjustment can reduce bearing life and can affect more than just the bearing. It’s important to adjust the wheel bearing endplay to the proper specifications. If the bearing set is adjusted too loose or too tight, it can cause the bearing to fail prematurely. There are a few types of assemblies, so using correct procedures and tools will ensure a comeback-free wheel bearing installation.

Other Posts

Impact Wrench Technology

Interchangeable anvils are a feature on some new impacts.

Tools in the Eye of the Beholder

We’re here to help you see all the tools, so you can invest wisely.

Multimeter Accuracy: How Important Is It?

Multimeter accuracy is critical for EV diagnostics.

multimeter
More Than A Scan Tool

Scan tools serve as indispensable diagnostic hubs, offering access to a wealth of resources, from OEM technical bulletins to community-documented repairs.

scan tool