Tech Update: Electronic Stability Control

Tech Update: Electronic Stability Control

Electronic stability control (ESC) was introduced in 1995 and touted as the second most important advancement in auto safety, after seat belts, becoming standard equipment on every 2012 passenger vehicle. ESC is supposed to help drivers maintain safe control of their vehicles and prevent accidents. However, it's the tires that determine the effectiveness of ESC for every vehicle.

By Skip Scherer, contributing writer

Electronic stability control (ESC) was introduced in 1995 and touted as the second most important advancement in auto safety, after seat belts, becoming standard equipment on every 2012 passenger vehicle.

ESC is supposed to help drivers maintain safe ­control of their vehicles and prevent accidents. However, it’s the tires that determine the ­effectiveness of ESC for every vehicle. Simply put, ESC is on-board computer technology that helps improve a vehicle’s steadiness on the highway by detecting and minimizing skids and maintaining steering control.

It works whether a vehicle is braking, ­accelerating or coasting by detecting understeer from front-end slides, oversteer from rear-end slides and hydroplaning. It performs in any driving condition, such as dry, wet or icy pavement, and at any speed.

In general, ESC systems monitor a vehicle’s ­stability 25 times per second to detect imminent skidding. It uses sensor signals that compare the intended direction in which the driver wants the vehicle to move, with the vehicle’s actual direction. If there is a ­discrepancy, the system makes adjustments to help prevent skidding and keep the vehicle on its planned path.

During normal driving, ESC works in the background and continuously monitors steering and vehicle direction. The driver’s intentions are ­determined through the measured steering wheel angle. The actual direction is determined by measured lateral acceleration, yaw or vehicle ­rotation, and each wheel’s road speed.

When a loss of steering control is detected, ESC automatically — and in the blink of an eye — uses the ­vehicle’s braking system to correct its path, literally steering the vehicle back on course. Braking is automatically applied to individual wheels. 

For example, braking a front wheel on the outside of a skid would counter oversteer, while braking an inner rear wheel would counter ­understeer. Some systems combine select braking with reduced engine power to help regain control of a vehicle.

The corrections happen so quickly that without a dashboard warning light, the driver might not know the vehicle’s on-board controls just helped avoid a potentially serious accident and injuries.

 

SAFETY STATISTICS

ESC and ABS are not the same thing. ABS prevents wheel lockup during braking. Speed sensors on a vehicle’s wheels detect developing problems and the on-board control unit sends signals that pump the brakes rapidly to prevent individual wheels from locking.

Every year ABS/ESC hydraulic control units get smaller and lighter. They are also becoming more functional with the ability to connect with more sensors to add features like automatic braking, adaptive cruise control and even regenerative braking control for hybrids.

NHTSA concluded that ESC ­reduces passenger car crashes by 35% and SUV crashes by 63%. It also determined that ESC was ­effective in reducing accidents of single vehicles that ran off the roadway and rolled over or struck a stationary object.

A similar study by the Insurance Institute for Highway Safety reported that ESC prevents 56% of fatal single-vehicle crashes and almost 80% of fatal single-vehicle rollovers.

 

THE ROLE OF TIRESWhen a loss of steering control is detected, ESC automatically -- and in the blink of an eye -- uses the vehicle's braking system to correct its path, literally steering the vehicle back on course.

In spite of all the high-tech ­electronics controlling a vehicle’s handling capabilities and stability, its four tires provide the contact points on a roadway’s surface that ultimately control the amount of slipping and sliding that can take place. ESC is only as good as the available traction. 

So, what do tire manufacturers consider when designing a tire that taps into ESC’s full potential? A spokesperson for one of the three largest tire companies, who asked not to be identified, said there is no special consideration given to ESC when tires are being developed.

At first, the response may seem surprising. However, tire dealers know that properly designed tires provide optimal traction for specific vehicles. A car’s design, weight, center of gravity, speed, direction and many other traits, as well as road conditions, add up to its overall balance, while the tires contribute to the vehicle’s overall ­stability.

Since ESC is safety technology and not a ­performance enhancement, it can’t improve on ­traction attributes already built into a tire. ESC ­doesn’t improve the inherent traction of tires, but good tires can maximize the safety maneuvers provided by ESC, such as better-controlled ­cornering.

The conclusion: ESC can only work when traction is available. Bald tires render ESC ineffective in rain. Likewise, hard tire compounds render ESC almost ­useless on ice.

A technician’s role in maintaining a fully functioning ESC starts with understanding the technology and educating his or her customers. ­Informing drivers about proper tire maintenance, as well as using appropriate tires for the winter ­season, ensures that on-board ESC, ABS and Traction Control technology improve the safety of the driver and others. Consistent tire wear is important to ESC’s complex electronics. Conflicting tire diameters and air pressures can fool the sensors.

Technicians must know if a vehicle that has ­undergone wheel alignment service requires its ESC steering angle sensor to be reset or not. ­Failure to perform an OEM’s required SAS reset procedure after an alignment could create ESC ­performance issues.  

 

 

You May Also Like

Embracing Cutting-Edge Solutions the Industry has to Offer

Embracing cutting-edge solutions is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.

Nadine Battah

Remember last month how I said 2024 was your year to be the technicians you always wanted to be? Remaining stagnant as a technician is simply not an option anymore if you want to be successful in the automotive industry. You must proactively seek out opportunities to embrace new tools, techniques and solutions that promise to enhance efficiency, accuracy and customer satisfaction.Embracing what’s new is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.One of the top reasons I can give you for embracing new technology is the potential for improved diagnostic accuracy and efficiency. With the arrival of advanced diagnostic tools, like the Bosch ADS 625X, the Autel IA900, or the Hunter ADASLink, technicians can pinpoint issues with precision, reducing guesswork and minimizing the risk of a comeback. Whether it’s sophisticated tools or cutting-edge software solutions, the ability to leverage these new tools should empower you to deliver next-level service and drive positive repair experiences for your customers.Another thing to keep in mind is that embracing new technology and equipment opens doors to expanded service offerings. From state-of-the-art lifts and alignment systems, to specialized tools designed for specific makes and models, investing in the latest equipment enables you and other technicians to tackle a larger range of repairs and maintenance with confidence and precision. As the technology in cars continue to evolve, so too must the tools and equipment that technicians rely on to get the job done.Embracing new technology and equipment can also lead to improved productivity in the shop. By leveraging high-quality products that are specifically designed for today’s vehicles, you can streamline workflow, minimize downtime and deliver exceptional results for your customers.At TechShop, we understand the importance of embracing new technology, equipment and products in the automotive repair industry. That’s why we’re excited to announce the debut of our all-new “Tool Time” video podcast series, where guests from brands like Ingersoll Rand, Clore Automotive, SATA Spray Equipment and many more will sit down and join Eric Garbe and myself to discuss education and training on the latest products our industry has to offer.Join us as we embrace the future of automotive tool supply and equipment advancements together. And, be sure to subscribe to the TechShop newsletter to stay tuned!

TPMS: Are Retrofits in Your Future?

Installing a retrofit kit can be performed with the tools and equipment you already own and use on a daily basis.

Tire tread
Maximize Your Scan Tool

Are you maximizing your scan tools to their full potential? Don’t let them be just an expensive code reader.

Scan Tool
2024 Is Your Year to Be the Technician You Always Wanted to Be

As we enter 2024, strategic career planning is essential for success in the automotive repair industry.

happy new year 2024
Impact Wrench Technology

Interchangeable anvils are a feature on some new impacts.

Other Posts

Tools in the Eye of the Beholder

We’re here to help you see all the tools, so you can invest wisely.

Multimeter Accuracy: How Important Is It?

Multimeter accuracy is critical for EV diagnostics.

multimeter
More Than A Scan Tool

Scan tools serve as indispensable diagnostic hubs, offering access to a wealth of resources, from OEM technical bulletins to community-documented repairs.

scan tool
Battling Stress and Burnout

Here are some quick tips for managing stress and avoiding burnout in the fast-paced automotive repair industry.

Nadine Battah