Monotube Shocks

Monotube Shocks

From the outside, most shock absorbers and struts look pretty much alike: a round steel tube that telescopes up and down with bushings or fittings on both ends. But inside there can be significant design differences that affect not only the ride control characteristics and performance of the damper, but also its cost. Last month, we covered a brief history of shock absorbers and the advantages of the more common “twin-tube” design. This month, we’re taking a closer look at the other style of shock, the “monotube” design.

In a conventional twin-tube shock absorber, the inner piston chamber is surrounded by an outer tube that acts as the fluid reservoir. As the shock pumps up and down, the action of the piston forces the hydraulic oil inside to flow back and forth through valving in the bottom of the shock into the outer fluid reservoir. In a monotube shock, there is no outer fluid reservoir. All the fluid remains in the piston chamber and a floating piston separates the fluid from a high pressure gas charge.

As the piston moves down, the fluid pushes against the floating piston and compresses the gas charge underneath it. The gas is actually nitrogen (air with oxygen and moisture removed). This creates a sort of “air spring” effect that keeps the fluid under constant pressure to reduce foaming as it flows back and forth through the orifices and valves in the piston.

For the monotube design to work, the gas pressure under the floating piston in the bottom of the shock must be quite high: 360 psi in the original Bilstein design, though some other manufacturers use pressures in the 260 psi range today. This also requires a good seal on the floating piston and a highly polished surface inside the piston tube — both of which increase the manufacturing cost of the shock.

When the monotube design was invented back in the 1950s, it was a revolutionary breakthrough in shock absorber technology. The floating piston and high pressure gas charge solved the foaming problem that had plagued conventional hydraulic shocks for a long time. When the fluid foams, the tiny bubbles offer less resistance to the motions of the piston causing the dampening characteristics of the shock to fade. This allows more wheel bounce and suspension motion and hurts handling. So when the first monotube gas charged shocks came out, it made a dramatic improvement in handling control.

The gas charged monotube design was invented by a Frenchman named DeCarbon, who worked with a German shock manufacturer names Bilstein to get his design patented in 1956. Two years later, Mercedes became the first auto maker to install monotube shocks as original equipment on some of their cars.

Because the gas charged monotube design was protected by patents, Bilstein had a monopoly on the technology up until 1971 when their patents expired. Other shock manufacturers, such as Koni, KYB, Tokiko, Monroe and Sachs, began producing monotube shocks of their own, and also added gas charging to many conventional twin-tube shocks.

Monotube shocks were widely used in racing in the 1960s and 1970s, and found their way into NASCAR in the 1980s. Since then, monotube shocks have also been used as original equipment on a variety of cars including Mercedes, Audi, Porsche, BMW, Saab and Volvo, 1993 and newer Camaro and Firebird, late-model Corvettes, and even some pickup trucks.

ADVANTAGES
In addition to reducing fluid foaming for better ride control (which is the gas-charged monotube shocks main advantage), the design has additional advantages over a conventional twin-tube shock:

  • The monotube shock provides better heat dissipation and cooling than a twin-tube shock. There is no outer tube or fluid reservoir to inhibit heat flow, so the monotube shock runs cooler and delivers more consistent ride control.

  • A monotube shock is lighter than a twin-tube shock that has the same external diameter. This reduces unsprung weight and allows the wheels and tires to follow the road more closely.

  • A monotube shock can be mounted in any position (right side up, upside down or even sideways) and still work. A twin-tube shock uses gravity to drain the fluid down through the valving in the bottom, and to maintain the gas charge in the outer reservoir. But a monotube has a floating piston and no reservoir, so the orientation of the shock does not matter. On racing applications, such as Formula One or Indy Cars, the shocks can be mounted sideways inside the body to reduce drag for better aerodynamics.

  • A monotube shock has a larger diameter piston than a twin-tube shock that has the same external dimensions, which gives the shock greater sensitivity for small piston motions.

  • Monotube shocks are used for may coil-over applications because of their compact design. Many of these applications also feature adjustable valving so the ride characteristics can be fine tuned or changed depending on how the vehicle is being driven.

REPLACEMENT MARKET
Like any type of shock absorber, a monotube shock won’t last forever. Over time, the piston seals can wear as can the shaft seal at the top of the shock. Fluid leaks and loss of the gas charge will reduce the shock’s ability to control the suspension, so eventually the shocks will have to be replaced.

According to market research, 86% of vehicles that end up in a salvage yard still have their original shocks or struts in place. Nobody ever replaced the shocks or struts — even though they probably needed it. The point here is that many vehicles are driving around with shocks or struts that are weak and should be replaced to restore like-new ride control and handling. Monroe currently recommend replacing the original equipment shocks and struts every 50,000 miles. If more motorists would do that, the shock/strut aftermarket could grow from its current $800 million a year in sales to who knows what? Yet the replacement market for shocks and struts remains flat.

DIAGNOSIS
A test ride is probably the best way to detect weak shocks or struts that need to be replaced, but a traditional bounce test is still a quick way to check for weak dampers, too. If the suspension bounces more than once after rocking and releasing the bumper, chances are the original shocks or struts are worn and should be replaced to restore safe handling.

A visual inspection of the shocks and struts should always be made anytime a vehicle has a tire wear problem, or you are doing an alignment, brake job or other undercar repairs or service work. Look for obvious signs of trouble such as fluid leaks, severe corrosion, broken or damaged mounts, signs of suspension bottoming, or cupped wear on any of the tires.

If you discover a shock or strut that has a problem or is getting weak, bring it to your customer’s attention and offer to replace their old shocks or struts with new ones. You should also ask them about their driving needs, what kind of ride they prefer, then discuss any possible suspension upgrades that would be a benefit to them. You might discuss the advantages of upgrading to some type of performance shock (gas-charged monotube) or adjustable dampers if that type of product would be of interest.

You May Also Like

Embracing Cutting-Edge Solutions the Industry has to Offer

Embracing cutting-edge solutions is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.

Nadine Battah

Remember last month how I said 2024 was your year to be the technicians you always wanted to be? Remaining stagnant as a technician is simply not an option anymore if you want to be successful in the automotive industry. You must proactively seek out opportunities to embrace new tools, techniques and solutions that promise to enhance efficiency, accuracy and customer satisfaction.Embracing what’s new is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.One of the top reasons I can give you for embracing new technology is the potential for improved diagnostic accuracy and efficiency. With the arrival of advanced diagnostic tools, like the Bosch ADS 625X, the Autel IA900, or the Hunter ADASLink, technicians can pinpoint issues with precision, reducing guesswork and minimizing the risk of a comeback. Whether it’s sophisticated tools or cutting-edge software solutions, the ability to leverage these new tools should empower you to deliver next-level service and drive positive repair experiences for your customers.Another thing to keep in mind is that embracing new technology and equipment opens doors to expanded service offerings. From state-of-the-art lifts and alignment systems, to specialized tools designed for specific makes and models, investing in the latest equipment enables you and other technicians to tackle a larger range of repairs and maintenance with confidence and precision. As the technology in cars continue to evolve, so too must the tools and equipment that technicians rely on to get the job done.Embracing new technology and equipment can also lead to improved productivity in the shop. By leveraging high-quality products that are specifically designed for today’s vehicles, you can streamline workflow, minimize downtime and deliver exceptional results for your customers.At TechShop, we understand the importance of embracing new technology, equipment and products in the automotive repair industry. That’s why we’re excited to announce the debut of our all-new “Tool Time” video podcast series, where guests from brands like Ingersoll Rand, Clore Automotive, SATA Spray Equipment and many more will sit down and join Eric Garbe and myself to discuss education and training on the latest products our industry has to offer.Join us as we embrace the future of automotive tool supply and equipment advancements together. And, be sure to subscribe to the TechShop newsletter to stay tuned!

TPMS: Are Retrofits in Your Future?

Installing a retrofit kit can be performed with the tools and equipment you already own and use on a daily basis.

Tire tread
Maximize Your Scan Tool

Are you maximizing your scan tools to their full potential? Don’t let them be just an expensive code reader.

Scan Tool
2024 Is Your Year to Be the Technician You Always Wanted to Be

As we enter 2024, strategic career planning is essential for success in the automotive repair industry.

happy new year 2024
Impact Wrench Technology

Interchangeable anvils are a feature on some new impacts.

Other Posts

Tools in the Eye of the Beholder

We’re here to help you see all the tools, so you can invest wisely.

Multimeter Accuracy: How Important Is It?

Multimeter accuracy is critical for EV diagnostics.

multimeter
More Than A Scan Tool

Scan tools serve as indispensable diagnostic hubs, offering access to a wealth of resources, from OEM technical bulletins to community-documented repairs.

scan tool
Battling Stress and Burnout

Here are some quick tips for managing stress and avoiding burnout in the fast-paced automotive repair industry.

Nadine Battah