Tech Tip: To Avoid Brake Comebacks, is it Better to Resurface or Replace?

Tech Tip: To Avoid Brake Comebacks, is it Better to Resurface or Replace?

Thanks to rising raw materials costs, there has been a steady increase in rotor prices, causing every link in the supply chain to adjust prices. Also, the cost to manufacture and ship rotors to your bay has increased dramatically. With that in mind, resurfacing can restore the friction surface on worn rotors to like-new condition, unless a rotor is worn down too far to be safely resurfaced or has cracks, deep grooves, severe rusting, hard spots or other structural defects ....

Thanks to rising raw materials costs, there has been a steady increase in rotor prices, causing every link in the supply chain to adjust prices. Also, the cost to manufacture and ship rotors to your bay has increased dramatically.

With that in mind, resurfacing can restore the friction surface on worn rotors to like-new condition, unless a rotor is worn down too far to be safely resurfaced or has cracks, deep grooves, severe rusting, hard spots or other structural defects.

Recently, however, ready availability of inexpensive offshore rotors has helped drive down prices, putting shop owners in a difficult dilemma. If new “economy line” rotors are less than the cost of labor to machine the rotor (and are also more profitable), why not sell new rotors in some cases?

The problem may be in the solution. Quality remains an issue with some of these rotors, but the price is still attractive. A rotor may not look complex on the surface, but if the manufacturer did not take the time to match the fin pattern or metallurgy, it could be worse than if you had machined the old rotor.

Premium rotors typically use the same casting configuration as OE (same number of cooling ribs between the faces and same pattern). Vehicle manufacturers use different cooling rib configurations to optimize cooling for specific vehicle applications and to reduce harmonics that contribute to brake noise. If rotors with a different rib design or configuration are installed, it may create cooling and/or noise problems.

Most economy rotors use a standard cooling fin configuration because it simplifies the casting process and consolidates part numbers. But the trade-off may be reduced cooling performance. If an OE rotor has 37 ribs and an economy rotor has only 32, cooling may be reduced 8%-10%. This can make the rotors run hotter, which shortens pad life. Lab tests have also shown that some economy rotors are much noisier than OE or premium replacement rotors (85 decibels versus 50 decibels).

Why Machine?
There are also some vehicles with rotor runout problems. Resurfacing these rotors with an on-car lathe can virtually eliminate runout problems, but it requires investing in the equipment. Some installers tell us it’s cheaper and easier just to replace the rotors. But if the runout is in the hub, new rotors won’t make any difference. They will either have to be cut on the car, or shimmed to correct the runout.

Several OEM engineers we’ve heard speak on this subject say OE rotors are typically designed to last two or even three pad replacements. Many do, but just as many do not. We’ve also heard reports that some OE passenger car rotors are now much thinner than they used to be to save weight, which also shortens their useful life. At the same time, some OEMs are actually increasing the size and thickness of rotors to extend life.

Rotor life can suffer, though, when overly abrasive pads are installed. Some aftermarket friction materials have been accused of being too aggressive and causing rapid rotor wear. If used on a vehicle with typical SAE G3000 gray cast-iron rotors, highly abrasive pads will often cause uneven wear, resulting in thickness variations that cause a pedal pulsation (brake judder) when the brakes are applied.

Rotors are supposed to outlive pads. But excessive runout, uneven wear, the appearance of hard spots and/or heat damage (cracking, glazing and discoloration) can make good rotors go bad.

Some vehicles are much more sensitive to runout than others. Generally speaking, the lighter the vehicle and the lighter the suspension, the more sensitive it is to rotor runout. The latest OEM service specifications typically call for 0.002- to 0.003-inch of lateral runout, which can be measured by placing a dial indicator against the face of the rotor and turning the rotor. If you see more than the allowed amount of movement in the dial indicator, the rotor and/or hub may have too much runout for smooth braking.

Most service specifications also say there should be no more than 0.001-inch of variation in rotor thickness. But checking a rotor for such subtle thickness variations isn’t easy because you have to measure at a dozen or more equally spaced locations around the rotor. Even then, you may not be sure of your measurements because small pits and grooves in the rotor surface can affect the results.

Most rotors today are manufactured with 0.0005- to 0.001-inch of total runout. Likewise, most hubs should have less than 0.002-inch of runout. But tolerances can sometimes stack up, creating too much total runout in the rotor and hub when the parts are assembled.

The main advantage of cutting rotors in place is that an on-car lathe cuts on the same plane that it rotates. This virtually eliminates runout and allows the rotor to run true. But it does require an on-car lathe and some training on set up and use. High-end on-car lathes have an automatic setup procedure that makes them quick and easy to use.

The same results can be achieved using a conventional bench lathe, but this requires a multi-step process. First, you have to measure and mark the point of maximum runout with the rotor on the vehicle. Next, you have to mount the rotor on the lathe arbor and attempt to duplicate the same amount of runout on the lathe. Then you can cut the rotor true and remount it on the car in the same index position as before – and hopefully the runout will be gone.

Repair or Replace?
The need for resurfacing depends on the condition of the rotors. In cases where a low-mileage vehicle is having its first brake job, you may not have to do anything to the rotors, provided they are in relatively good condition and show little wear or grooving. But in high-mileage vehicles and those where the rotors are heavily worn, grooved or heat checked, resurfacing or replacement will be necessary.

If you can feel the grooves with your fingernail, the rotor is probably too rough and should be resurfaced or replaced. No rotor should be resurfaced until you’ve measured its thickness with a micrometer. A rotor must be replaced if it’s worn down to minimum specifications or the discard thickness, or cannot be resurfaced without exceeding the minimum “machine to” spec. These specifications are usually stamped on the rotor, and can also be found in repair manuals. The specification allows for a certain amount of wear to occur before the rotor reaches the end of its service life.

Finally, if you are replacing rotors, should you replace troublesome composite rotors with solid cast rotors? Cast rotors are cheaper, and are more rigid than composite rotors. But the center hat section of a solid cast rotor is thicker and changes the steering geometry (scrub radius and toe alignment) slightly. This may or may not affect steering and handling on some vehicles.

For now, some OEMs still recommend replacing same with same, while others say it’s OK to replace these composites with cast.

 

You May Also Like

Embracing Cutting-Edge Solutions the Industry has to Offer

Embracing cutting-edge solutions is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.

Nadine Battah

Remember last month how I said 2024 was your year to be the technicians you always wanted to be? Remaining stagnant as a technician is simply not an option anymore if you want to be successful in the automotive industry. You must proactively seek out opportunities to embrace new tools, techniques and solutions that promise to enhance efficiency, accuracy and customer satisfaction.Embracing what’s new is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.One of the top reasons I can give you for embracing new technology is the potential for improved diagnostic accuracy and efficiency. With the arrival of advanced diagnostic tools, like the Bosch ADS 625X, the Autel IA900, or the Hunter ADASLink, technicians can pinpoint issues with precision, reducing guesswork and minimizing the risk of a comeback. Whether it’s sophisticated tools or cutting-edge software solutions, the ability to leverage these new tools should empower you to deliver next-level service and drive positive repair experiences for your customers.Another thing to keep in mind is that embracing new technology and equipment opens doors to expanded service offerings. From state-of-the-art lifts and alignment systems, to specialized tools designed for specific makes and models, investing in the latest equipment enables you and other technicians to tackle a larger range of repairs and maintenance with confidence and precision. As the technology in cars continue to evolve, so too must the tools and equipment that technicians rely on to get the job done.Embracing new technology and equipment can also lead to improved productivity in the shop. By leveraging high-quality products that are specifically designed for today’s vehicles, you can streamline workflow, minimize downtime and deliver exceptional results for your customers.At TechShop, we understand the importance of embracing new technology, equipment and products in the automotive repair industry. That’s why we’re excited to announce the debut of our all-new “Tool Time” video podcast series, where guests from brands like Ingersoll Rand, Clore Automotive, SATA Spray Equipment and many more will sit down and join Eric Garbe and myself to discuss education and training on the latest products our industry has to offer.Join us as we embrace the future of automotive tool supply and equipment advancements together. And, be sure to subscribe to the TechShop newsletter to stay tuned!

Brake Lathe Basics

Resurfacing drums and rotors is a machining process with its own specific guidelines.

Refrigerant Oil Has to Be Right

Oil type is just as important as oil capacity.

Three bottles of refrigerant oil
Top 5 Tools: Steve Coffell, Auto World, Hazelwood, MO

Steve Coffell, a technician at Auto World in Hazelwood, MO, says his Top 5 Favorite Tools are: Related Articles – Lisle 61860 Oil Filter Housing Torque Adapter – Mueller Kueps Presents Redesigned Sensor Tap Series – Lisle Low Profile Fuel Line Disconnect   OTC Genisys Touch – Quick scan, bidirectional control Snap-on VANTAGE Pro –

Wheel Bearing Adjustment Tools & Equipment

A wheel bearing that’s out of adjustment can reduce bearing life and can affect more than just the bearing. It’s important to adjust the wheel bearing endplay to the proper specifications. If the bearing set is adjusted too loose or too tight, it can cause the bearing to fail prematurely. There are a few types of assemblies, so using correct procedures and tools will ensure a comeback-free wheel bearing installation.

Other Posts

TPMS: Are Retrofits in Your Future?

Installing a retrofit kit can be performed with the tools and equipment you already own and use on a daily basis.

Tire tread
Maximize Your Scan Tool

Are you maximizing your scan tools to their full potential? Don’t let them be just an expensive code reader.

Scan Tool
2024 Is Your Year to Be the Technician You Always Wanted to Be

As we enter 2024, strategic career planning is essential for success in the automotive repair industry.

happy new year 2024
Impact Wrench Technology

Interchangeable anvils are a feature on some new impacts.