Air Ride: Compressor Diagnostics

Air Ride: Compressor Diagnostics

On most modern vehicles, the compressor and air ride control unit are very intelligent components. Most communicate with the Body Control Module (BCM) on a high-speed serial data bus. These systems have malfunction indicator lights on the dash and require the use of a scan tool to diagnose the system.

On most modern vehicles, the compressor and air ride control unit are very intelligent components. Most communicate with the Body Control Module (BCM) on a high-speed serial data bus. These systems have malfunction indicator lights on the dash and require the use of a scan tool to diagnose the system. 
 
Servicing modern air ride systems requires the right service information to interpret the “C” or chassis codes the air ride system can generate. A failure code and an illuminated dash light could be just a failure of the air ride module to communicate with the BCM. This could be due to electrical problems and not a leak in the air system or a compressor failure. 
 

With an enhanced or factory scan tool, it is possible to perform bi-direction tests on the compressor and valves during inspection. This can save you hours of diagnostic time waiting for a compressor to turn on and drain the battery or testing for an intermittent condition. Throwing parts at these vehicles without performing a proper diagnosis can result in an unhappy customer and lost productivity.  
 
The air ride module does more than control the ride height. The software controls the temperature of the compressor so it does not damage itself trying to inflate a leaking air bag. It can also change the characteristics of the air bag in response to how fast the vehicle is going and if it is in sport or towing mode. But most of all, it helps to filter out erroneous ride height readings so the best possible ride is achieved.  
  
Compressor Killers
Most passenger and light-truck compressors are diaphragm types that supply an oil-free air supply to the springs. A piston-type compressor can be found on applications that require a higher volume of air. 
 
Running the compressor for extended periods can over heat the compressor and damage the diaphragm or piston. It is very important to ensure that the source of air for the compressor is clean and as dry as possible.
 
In the air is moisture that can damage not only the compressor, but the valves. When air is compressed, the water vapor contained in the air is condensed into a liquid. If there is no means of removing the water from the system, it will find its way to all parts of the system causing corrosion damage or freezing.
 
Most systems have a dryer that is connected to the compressor outlet to absorb the water entering the system. The dryer contains a moisture-absorbing desiccant such as silica gel. The desiccant can hold a given amount of water and once the desiccant is saturated with water, it will allow water to pass into the system.
 
The dryers that are installed on most systems do not have an indicator that will show when it is saturated and no longer able to absorb water. An additional dryer with a moisture indicator can be added to the original equipment dryer. It can be installed in the supply line and placed in a position where a periodic check can be made.
 
Some systems have filters on the air intake for the pump. The filter removes airborne particles and acts as a noise muffler for the compressor. Some systems even send purged air back through the filter. This filter should be replaced with the compressor, and often this filter is attached to the compressor’s casing. 
 
Another killer of air-ride components is the compressor. As the compressor over heats and wears, it can send debris and oil to the rest of the system. This oil and debris can degrade the air bellows even after the compressor is replaced. This is why it is critical to flush the lines if a compressor has failed.  
 
Some systems have air reserve tanks or accumulators located in the most inconvenient locations, like below the C-pillar or next to the frame rail. If the system experiences a catastrophic failure of the compressor or air bladder, replacement or flushing of the reserve might be required.    
The health of the entire system depends on the quality of the air supply. It is rare for just one component of an air suspension to fail.  
Mechanical and Solenoid Valves
There are various combinations of both mechanical and solenoid valves.

The function of the mechanical or solenoid valve is to exhaust air from the spring(s). Each spring can have a valve. For the Lincoln air suspension system, there are five solenoid valves — one for each air spring or strut and one to exhaust air from the system. 
 
Most valves are used for a pair of load-assist springs. The compressor unit contains a one-way check valve to isolate it from the springs or a reservoir. The Lincoln compressor has a combination one-way check valve and exhaust solenoid valve to inflate or exhaust the springs individually. Whether the valve is mechanical or solenoid, it needs dry air to operate properly.
 
Plastic line is used to transport air in the system in sizes 1/4”, 3/8” and 1/2”. Most fittings are push-on O-ring type ranging in size from 1/8” to 3/8” Male NPT.
 
Air struts for some import vehicles can have even more complex valves, air chambers and accumulators on the strut body to keep the suspension taut under certain conditions. These types of struts will have both an air and electrical connection to control the valves on the strut and the hydraulic valves of the dampener.  
Dynamic Vehicle Trim
The Lincoln Continental Mark VIII is equipped with ride height sensors at each front wheel and one for the live rear axle at the driver’s side control arm. The sensors provide input to the controller for ride height. The suspension controller is programmed for two different ride heights.
 
Parked, the vehicle will maintain this height by compensating for passengers and luggage. When the vehicle is put into gear, the controller will raise the suspension ride height 0.75 inch (20 mm). When vehicle speed exceeds 63 mph (105 kph), ride height is lowered by 0.75 inch (20 mm). When vehicle speed decreases to 45 mph (72 kph), the vehicle ride height is increased. The differential between 45 and 63 mph provides a dead band where the system will not adjust ride height. This prevents the system from cycling with small changes in vehicle speed. With the ignition off and doors closed, the vehicle returns to parked height.
 
The rear air struts on GM vehicles are used to assist the conventional coil springs. Cadillac vehicles with Road Sensing Suspension (RSS) have an electrically operated hydraulic valve located at the base of the air shock. There are sensors located at each wheel that supply input to the ride controller that operates the valves in the air shock and front struts. The suspension height sensor is located on the driver-side control arm and the compressor is located in the rear suspension cradle.
Alternatives
There are suppliers that can provide economical replacements for both springs and struts. These alternatives replace the air ride components with springs and conventional ride control units. On some vehicles that still have 100,000 of miles of useable service left, these kits can offer an economical option for the driver. Also, some remanufacturers are willing to pay for the worn air ride shock or strut cores that come off the vehicle. In some cases, the core could be worth $300! 

You May Also Like

Embracing Cutting-Edge Solutions the Industry has to Offer

Embracing cutting-edge solutions is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.

Nadine Battah

Remember last month how I said 2024 was your year to be the technicians you always wanted to be? Remaining stagnant as a technician is simply not an option anymore if you want to be successful in the automotive industry. You must proactively seek out opportunities to embrace new tools, techniques and solutions that promise to enhance efficiency, accuracy and customer satisfaction.Embracing what’s new is strategic and imperative for technicians navigating the constantly changing landscape of automotive maintenance and repair.One of the top reasons I can give you for embracing new technology is the potential for improved diagnostic accuracy and efficiency. With the arrival of advanced diagnostic tools, like the Bosch ADS 625X, the Autel IA900, or the Hunter ADASLink, technicians can pinpoint issues with precision, reducing guesswork and minimizing the risk of a comeback. Whether it’s sophisticated tools or cutting-edge software solutions, the ability to leverage these new tools should empower you to deliver next-level service and drive positive repair experiences for your customers.Another thing to keep in mind is that embracing new technology and equipment opens doors to expanded service offerings. From state-of-the-art lifts and alignment systems, to specialized tools designed for specific makes and models, investing in the latest equipment enables you and other technicians to tackle a larger range of repairs and maintenance with confidence and precision. As the technology in cars continue to evolve, so too must the tools and equipment that technicians rely on to get the job done.Embracing new technology and equipment can also lead to improved productivity in the shop. By leveraging high-quality products that are specifically designed for today’s vehicles, you can streamline workflow, minimize downtime and deliver exceptional results for your customers.At TechShop, we understand the importance of embracing new technology, equipment and products in the automotive repair industry. That’s why we’re excited to announce the debut of our all-new “Tool Time” video podcast series, where guests from brands like Ingersoll Rand, Clore Automotive, SATA Spray Equipment and many more will sit down and join Eric Garbe and myself to discuss education and training on the latest products our industry has to offer.Join us as we embrace the future of automotive tool supply and equipment advancements together. And, be sure to subscribe to the TechShop newsletter to stay tuned!

TPMS: Are Retrofits in Your Future?

Installing a retrofit kit can be performed with the tools and equipment you already own and use on a daily basis.

Tire tread
Maximize Your Scan Tool

Are you maximizing your scan tools to their full potential? Don’t let them be just an expensive code reader.

Scan Tool
2024 Is Your Year to Be the Technician You Always Wanted to Be

As we enter 2024, strategic career planning is essential for success in the automotive repair industry.

happy new year 2024
Impact Wrench Technology

Interchangeable anvils are a feature on some new impacts.

Other Posts

Tools in the Eye of the Beholder

We’re here to help you see all the tools, so you can invest wisely.

Multimeter Accuracy: How Important Is It?

Multimeter accuracy is critical for EV diagnostics.

multimeter
More Than A Scan Tool

Scan tools serve as indispensable diagnostic hubs, offering access to a wealth of resources, from OEM technical bulletins to community-documented repairs.

scan tool
Battling Stress and Burnout

Here are some quick tips for managing stress and avoiding burnout in the fast-paced automotive repair industry.

Nadine Battah