Ignition Coil Output

Ignition Coil Output

To see inductance inside the primary windings, use an amp probe placed around the positive wire for the ignition coil.

Kilovolts or kV is the unit used to measure the output of an ignition coil. Some coils can output 20kV to 40 kV. So, how does an ignition coil turn system or battery voltage into these huge voltages? The answer is inductance. 

The ECM provides the voltage to the primary coil winding. The primary winding might have 100 turns around the coil’s core or plates. When the voltage to the coil is turned off, a magnetic field collapses. The collapsing field will generate more than 100 volts thanks to inductance. The energy is transformed by the windings in the secondary with inductance again, but thanks to the 10,000 windings, the voltage is boosted to 40kV at the spark plug’s electrodes. The best way to see inductance inside the primary windings is to use an amp probe placed around the positive wire for the ignition coil. With this setup, you can see the current ramping in the coil and the collapse of the magnetic field. 

If you look at a secondary ignition waveform on a scope, you will see a spike representing the coil’s output. I know what you are thinking: if the ignition coil has a fixed ratio of primary and secondary windings, and the system voltage is constant, shouldn’t the spike be the same all the time? In theory, yes. In practice, the spark plug and mixture of air and fuel inside the cylinder can determine how high the spike will go on your scope.

The spike is when the coil discharges, and the spark jumps from one electrode to the other. This spike changes depending on the resistance between the center and side electrodes. The resistance depends on what is going on inside the combustion chamber.

Imagine the air and fuel inside the combustion chamber as electrical resistors between the spark plug electrodes. If you increase the distance between the electrodes, you increase the amount of air between the electrodes and the value of the resistor between them. 

As cylinder pressure rises and the fuel mixture changes, the amount of energy required to fire the plugs also increases. This is why the spike should increase in height if you snap the throttle.

If the spike does not increase when the throttle is snapped or is lower when compared to the other coils, it is a sign the spark might be escaping to areas other than the spark plug electrodes. This could be caused by a shorted connector or boot with an air gap. It could also be the case that the windings inside the coil are damaged.

To the right of the spike is what is called the “burn” or “spark line.” This lower part of the secondary ignition waveform represents the when the plasma is present between the two electrodes. As the energy in the secondary windings dissipates, the line should gently slope downward. Some spark lines might change in shape as the resistance changes between the electrodes inside the cylinder. This change in resistance could be caused by turbulent air or droplets of fuel passing between the electrodes. 

When there isn’t enough energy in the secondary windings, the spark line drops to the zero line. Depending on coil design you might see oscillations in the waveform.

The key with the spike and spark line is to compare it to the other coils on the vehicle. If one spike goes higher than the rest, it signifies two things. First, the resistance in the combustion chamber could be different than the rest of the cylinders, or the spark plug could be worn. If the spike is significantly lower than the rest of the cylinders, it is a sign that the resistance is lower in the plug or cylinder. Sometimes, a clogged or dead fuel injector can cause a lower spike when the throttle is snapped.

You May Also Like

Repairing Wiring Harnesses

A guide to probing and poking.

The Hippocratic Oath states a doctor shall “do no harm.” The technician’s oath is the same, but that we “do no harm” to a vehicle we are trying to diagnose or repair. This oath has become more difficult to follow as vehicles have become more complex. 

One of the most controversial topics among technicians is the probing and piercing of wires and connectors. Some technicians curse t-pins and piercing probes claiming they can damage a wiring harness. On the other end of the spectrum are technicians who have zero problems stuffing a blunt multimeter lead into a connector for an ECM.

ADAS Calibration – Myths and Operation

Many don’t understand what happens during an ADAS calibration. Here’s what really goes on.

Electrical Circuit Diagnostics

Your diagnostic approach needs to be well thought out, and it starts with your equipment.

What to do When Your Scan Tool Doesn’t Work

Getting an error message on your scan tool? Here are some tips to help you out.

tablet with error message
Compressor Oil for R1234yf

Working on R-1234yf systems is not that different from the R-134a variety.

Other Posts

Nissan Key Will Not Start

Nissan keys use radio frequencies (RF) similar to other everyday wireless devices.

Can You Diagnose a TPMS Radio Wave?

There are a couple of approaches and tools you can use to diagnose a TPMS radio wave.

radio tower
CAN Bus Communications

There are three types of bus configurations that you will come in contact with — loop, star and a hybrid of both.

There are three types of bus configurations that you will come in contact with — loop, star and a hybrid of both.
Key Programming

Three situations might require key programming capabilities at your shop.

Key Programming has evolved over the years.